Adomian Decomposition Method for Certain Space-Time Fractional Partial Differential Equations
نویسنده
چکیده
The fractionalspace and time, as ageneralization of telegraph, diffusion and the waveequations, are considered. The (direct case and the modified cases) of Adomiandecompositionmethod are adopted to treat the certain space-time fractional partial differentialequations, in thispaper, four distinguished cases willbemodified and applied to solvedifferent certain space-timefractionalorder (homogeneous or inhomogeneous; linear or nonlinear), the steps of solutions willbegiven, sevendifferentexampleswillbesolved to show the powerful of thismethod to solvedifferentkinds of problems, finally figures and tables of resultswillbegiven by using programs of matlab.
منابع مشابه
Exact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملAdomian decomposition method to find the approximate solutions for the fractional PDEs
By introducing the fractional derivatives in the sense of caputo, we use the Adomian decomposition method to construct the approximate solutions for some fractional partial differential equations with time and space fractional derivatives via the time and space fractional derivatives wave equation, the time and space fractional derivatives reduced wave equation and the (1+1)-dimensional Burger’...
متن کاملSolution to time fractional generalized KdV of order 2q+1 and system of space fractional PDEs
Abstract. In this work, it has been shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve time fractional generalized KdV of order 2q+1 and certain fractional PDEs. It is shown that exponential operators are an effective method for solving certain fractional linear equations with non-constant coefficients. It may be concluded that the com...
متن کاملModified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations
This paper successfully applies the Adomian decomposition and the modified Laplace Adomian decomposition methods to find the approximate solution of a nonlinear fractional Volterra-Fredholm integro-differential equation. The reliability of the methods and reduction in the size of the computational work give these methods a wider applicability. Also, the behavior of the solution can be formall...
متن کاملA new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics
In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...
متن کامل